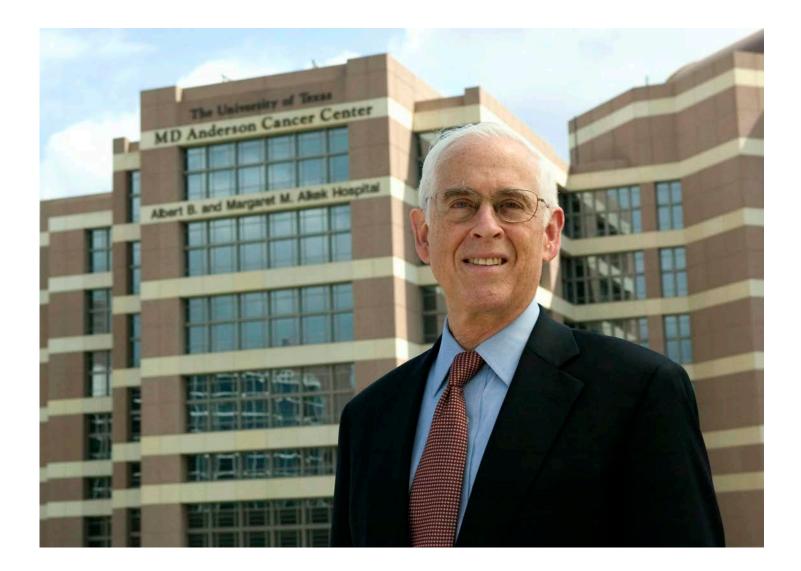


THE UNIVERSITY OF TEXAS MDAnderson Cancer Center

Making Cancer History®


Precision Cancer Medicine: Achievements and Prospects

John Mendelsohn, MD President Emeritus

Tang Prize Award Ceremony

September 22, 2018

Presented by Mien-Chie Hung, PhD

Dr. John Mendelsohn with M.D. Anderson's Hospital

Education

- Harvard College, Cambridge, MA, B.A., 1958, Biochemical Science
- University of Glasgow, Glasgow, Scotland, Fulbright Scholar, 1959, Research in Molecular Biology
- Harvard Medical School, M.D. 1963

Academic Administrative Appointments/Responsibilities

- •Founding Director of Cancer Center, University of California, San Diego, CA, 1976-85
- •Chairman, Department of Medicine, Memorial Sloan- Kettering
- Cancer Center, New York, NY, 1985-96
- •President, The University of Texas M. D. Anderson Cancer
- Center, Houston, TX, 1996- 2011
- •Director, Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 2011-18

Scientific Achievements

- First hypothesis, with Dr. Gordon Sato, that inhibition of EGF receptors and of a tyrosine kinase might be an effective anticancer treatment. 1980
- First creation of an anti-EGF receptor/anti-tyrosine kinase agent that blocked receptor kinase activation and inhibited cell growth. 1983-84
- First clinical trial with an agent targeting a growth factor receptor and a tyrosine kinase, demonstrating safety and feasibility. 1990
- First studies demonstrating mechanisms by which inhibition of EGF receptor tyrosine kinase inhibits cell proliferation and other cellular functions. 1996
- First clinical trial providing proof of concept that an antireceptor agent (Herceptin) used alone could produce a clinically useful response rate (10%) in patients. 1996
- First clinical trial demonstrating that addition of an EGF receptor inhibitor could overcome resistance to a chemotherapeutic agent (cisplatin in head and neck cancer). 2001

FDA Approved Anti-cancer Drugs

- C225 (Cetuximab/Erbitux) for advanced, irinotecanrefractory colorectal cancer, 2004
- C225 with radiation for head and neck cancer, 2006
- Herceptin for HER-2/neu positive breast cancer, 1999

HONORS AND AWARDS

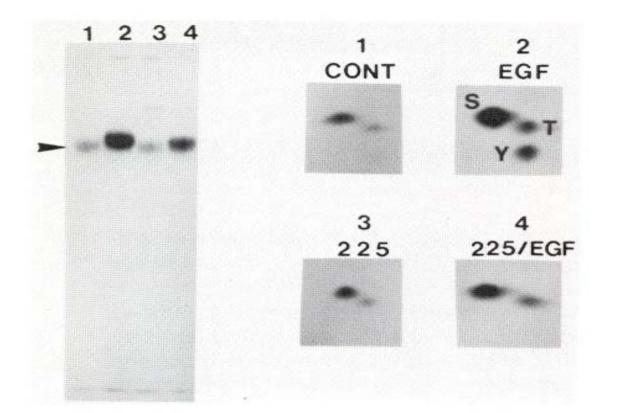
- Phi Beta Kappa, Harvard College, 1958
- United States Fulbright Scholar in Biochemistry, University of Glasgow, Scotland, 1958-59
- Alpha Omega Alpha, Harvard Medical School, 1962
- First Prize, Boylston Society Essay Contest, Harvard Medical School, 1963
- Research Career Development Award, National Institutes of Health, 1973-78
- Visiting Professor, Netherlands Cancer Institute, Amsterdam (sabbatical), 1978
- American Cancer Society Professor of Clinical Oncology, 1982-85
- "Headliner of the Year" in Medicine, Press Association, San Diego, CA, 1985
- Winthrop Rockefeller Chair in Medical Oncology, Memorial Sloan-Kettering Cancer Center, 1985-96
- Merit Award, National Cancer Institute Grant, 1990-97
- Raymond Bourgine Award for Excellence in Cancer Research, 1997

HONORS AND AWARDS

- Bristol-Myers-Squibb Cancer Research Award, 1997
- Gold Medal of Paris, 1997
- Elected Member, Institute of Medicine of the National Academy of Science, 1997
- Breast Cancer Research Foundation's Jill Rose Award for Outstanding Breast Cancer Research, 1997
- 4th Joseph H. Burchenal American Association for Cancer Research Clinical Research Award, 1999
- Elected Member, Royal Netherlands Academy of Arts and Sciences, 1999-
- Simon M. Shubitz Award, University of Chicago Cancer Research Foundation, 2002
- David A. Karnofsky Memorial Award, American Society of Clinical Oncology, 2002
- 27th Bristol-Myers Squibb Freedom to Discover Award for Distinguished Achievement in Cancer Research, 2004
- Fulbright Lifetime Achievement Medal, 2005
- Honorary Doctor and Professor, China Medical University, Taichung, Taiwan, 2005
- Dan David Prize in Cancer Therapy, 2006

Rationale 1980

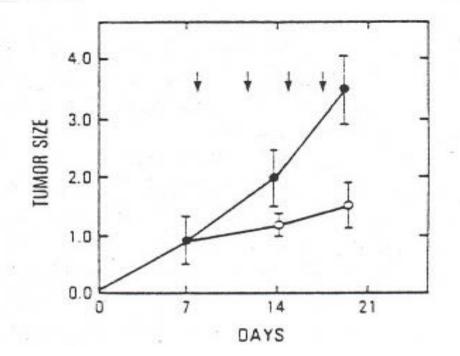
- EGF characterized 1962¹. EGFR characterized 1975-80.² (Cohen-Nobel Prize, 1986).
- Autocrine hypothesis: EGF or TGFα can autostimulate the cell's EGFRs. (Todaro and Sporn).³
- Tyrosine kinase activity first identified in src oncogene and EGFR (Cohen, Hunter, Erickson).^{2,4,5}
- Overexpression of EGFR common in human cancers (Ozanne, many others).⁶
- Preferential addiction of transformed cells.
- "Experiments of nature." Circulating autoantibodies against receptors can cause stable physiologic change (disease): myasthenia gravis, thyroid disease and insulin resistance.
- Right technologies: nude mice, monoclonal antibodies.
 - 1. Cohen S. J Biol Chem 1962;237:1555-1562; 2. Chinkers M, Cohen S. Nature 1981;290:516-519;
 - 3. Sporn MB, Todaro GJ. N Engl J Med 1980;303:878-880; 4. Cooper JA, Hunter T. J Cell Biol 1981;91:878-883;
 - 5. Erickson E, et al. J Biol Chem 1981;256:11381-11384; 6. Mendelsohn J, Baselga J. Oncogene 2000;19:6550-6565


Hypothesis: 1980

John Mendelsohn and Gordon H. Sato

Monoclonal antibodies which bind to EGF receptors and block access to EGF or TGF- α may prevent cell proliferation, by inhibiting activation of the EGF receptor tyrosine kinase.

Inhibition of P- Tyrosine by mAb225



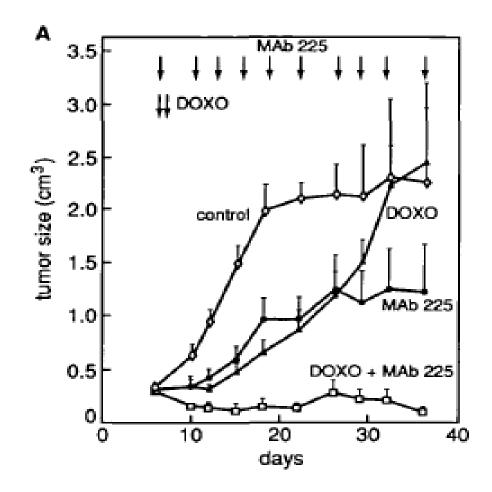
A431 cells incubated with ³²P, then (1) no addition, (2) EGF, (3) mAb225, (4) EGF + mAb225: immunoprecipitated with mAb528, gel electrophoresis, hydrolysis and 2D-thin layer electrophoresis.

Sunada, J Cell Physiol. 1990

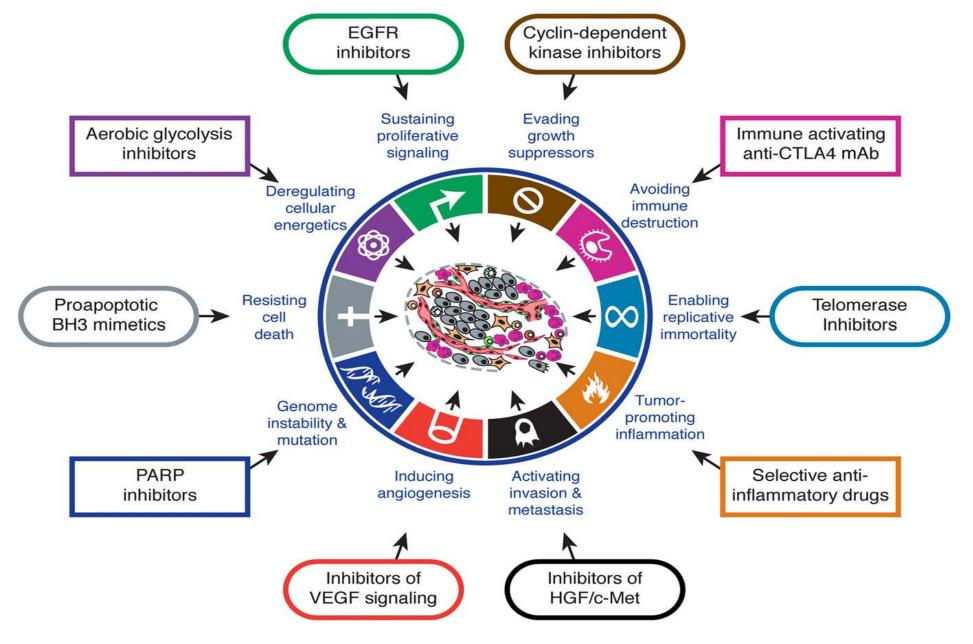
Growth Inhibition of Human Tumor Cells in Athymic Mice by Anti-Epidermal Growth Factor Receptor Monoclonal Antibodies¹

Hideo Masui,² Tomoyuki Kawamoto, J. Denry Sato,³ Bonnie Wolf, Gordon Sato,⁴ and John Mendelsohn⁵ Cancer Center, Q-058, University of California, San Diego, La Jolla, California 92093

control group, o treated group


Cancer Research 44, 1002-1007, March 1984

Summary of Accomplishments 1980 - 1990


- 1. First hypothesis, with Dr. Gordon Sato, that an agent blocking activation of a growth factor receptor could inhibit cell proliferation.
- 2. First production of an agent that inhibited a receptor tyrosine kinase.
- 3. First clinical trial in humans with an agent targeting a growth factor receptor and a tyrosine kinase.
- First clinical trial with a monoclonal antibody specifically designed to alter a biologic function, not to elicit an immunological response. In fact, it can do both.

Antitumor Effects of Doxorubicin in Combination With Anti-epidermal Growth Factor Receptor Monoclonal Antibodies

Jose Baselga, Larry Norton, Hideo Masui, Atanasio Pandiella, Keren Coplan, Wilson H. Miller, Jr., John Mendelsohn

J Natl Cancer Instit 85:1327-1333, 1993

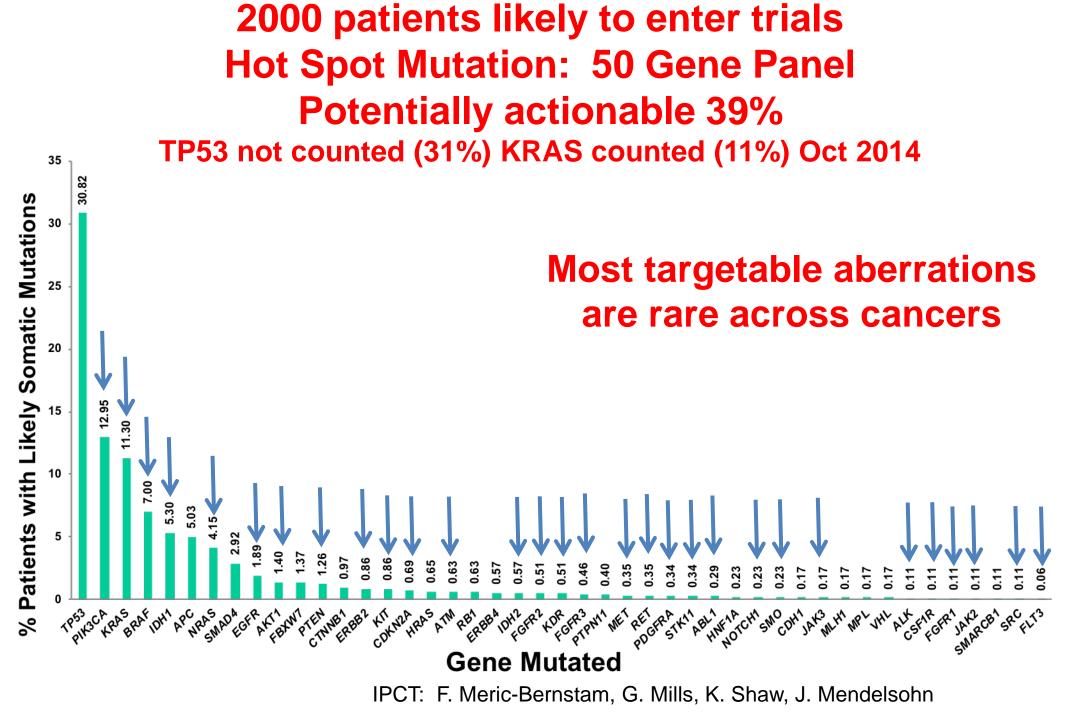
HALLMARKS OF CANCER

Hanahan D and Weinberg RA, Cell 144, 5:646-674, 2011

Molecularly Targeted Oncology Agents – FDA Approved

Agent	Target	Class	Disease	
Alemtuzumab (Campath)	CD52	mAb	B-CLL	
Anastrozole (Arimidex)	Aromatase	Aromatase inhibitor	Breast Cancer	
Bevacuzumab (Avastin)	VEGF	mAb	NSCLC, T Cell Lymphoma, CRC	
Bortezomib (Velcade)	Proteasome	Proteasome inhibitor	Multiple Myeloma	
Cetuximab (Erbitux)	EGFR	mAb-TKI	CRC, HNSCC	
Dasatinib (Sprycel)	Bcr-Abl, Src	ТКІ	CML	
Erlotinib (Tarceva)	EGFR	ТКІ	NSCLC, Pancreatic Cancer	
Gefitinib (Iressa)	EGFR	ТКІ	NSCLC	
Gemtuzumab (Mylotarg)	CD33	mAb	B Cell NHL	
Imatinib (Gleevac)	cKit, Bcr-Abl, PDGFR	ТКІ	CML, GIST	
Irbitumomab (Zevalin)	CD20	mAb	B Cell NHL	
Lapitinib (Tykerb)	EGFR/Her2	ТКІ	Breast Cancer	11/20 target
Nilotinib (Tasigna)	Bcr-Abl, cKit, PDGF	ТКІ	CML	ТК
Panitumumab (Vectibix)	EGFR	mAb-TKI	CRC	5/20 target
Rituximab (Rituxan)	CD20	mAb	B Cell NHL	EGFR
Sorafenib (Nexavar)	Raf, MAPK, VEGFR2, PDGFR	ТКІ	RCC	
Sunitinib (Sutent)	VEGFR2, PDGFR, cKit, FGFR	ТКІ	RCC, GIST	
Temsirolimus (Torisel)	mTOR	Ser/Thr kinase inhibitor	RCC	
Tositumomab (Bexxar)	CD20	mAb	Follicular NHL	
Trastuzumab (Herceptin)	Her2/neu (Erb2)	mAb-TKI	Breast Cancer	

Personalized Cancer Therapy: The Paradigm of Cancer as a Genetic Disease


- 1. We have identified most of the genetic abnormalities that cause cancer.
- 2. There are over 800 drugs in the pipeline that target the products of those abnormal genes.
- 3. We can detect aberrant genes (biomarkers) in an individual patient's cancer in a reasonable time frame, and at a reasonable cost.
- 4. Clinical trials assigning a targeted therapy on the basis of the genetic aberrations in a patient's cancer have resulted in successes.

Personalized Cancer Therapy – Recent Successes: Importance of Biomarkers

- 1. Trastuzumab for high-HER2 breast cancer. Slamon, NEJM, 2001
- 2. Imatinib, first for CML, then for GI stromal tumors with cKit mutations. Drucker, NEJM, 2001, Demitri, NEJM, 2002.
- 3. PARP inhibitor olaparib for BRCA 1/2-associated cancers. Fong, NEJM, 2009.
- 4. Gefitinib against the EGF receptor as first line therapy for advanced NSCLC. Mok, NEJM 2009
- 5. Crizotinib for lung cancers with ALK-EML rearrangements. Kwak, NEJM, 2010.
- 6. Vemurafenib for melanomas with BRAF V600E mutations. Flaherty, NEJM, 2010.

Sheikh Khalifa Institute for Personalized Cancer Therapy: 2011 Goals

- 1. Create the infrastructure and platforms for <u>genetic analysis</u> of large numbers of clinical cancer specimens. Other "omics" to follow.
- 2. Support <u>clinical trials</u> bringing therapies to patients that target the genetic aberrations in their cancers.
- 3. Provide decision support to create personalized cancer treatment plans.
- 4. Promote research into the <u>mechanisms of response and</u> <u>resistance</u> to targeted therapies.
- 5. <u>Demonstrate the value</u> of this approach so that it will become standard of practice and reimbursed.
- 6. Educate the next generation of clinical investigators.

Patients Screened for **Non-Standard** of Care Potentially Actionable Genomic Aberrations: first 2,000 patients, updated 2016

	50 gene panel	400 gene* panel
Potentially actionable somatic mutations	39%	47%
(not including TP53)		
Non-actionable somatic mutations	21%	
Likely germline variants	10%	
No mutations/variants	30%	

Treated on genotype matched trials11%24%

*More genes, includes copy number, decision support provided, increased number of trials available.

IPCT: F. Meric-Bernstam, G. Mills, K. Shaw, J. Mendelsohn

Genotype/Biomarker-Selected Basket Trials in ICT

Akt	AZD5363, MSC2363318A
PTEN	Buparlisib, MSC2363318A, Talazoparib
PIK3R1/2	MSC2363318A
РІКЗСА	AZD536, GDC-0032, MSC2363318A
FGFR1/2/3	BGJ398, TAS-120, Debio1347
FGFR4	TAS-120
FGFs	BGJ398, TAS-120
NRAS	BGJ398, TAS-120
KRAS	CB-839, Selumetinib
BRAF	Dabrafenib+Trametinib, LGK974, Sorafenib, Vemurafenib, BVD-523
N-MYC	GSK525762
NUTM1	GSK525762
EGFR	Erlotinib, KBP-5209, Neratinib
HER3	KBP-5209, Neratinib
HER2	Everolimus, KBP-5209, Neratinib, Pertuzumab, Trastuzumab
CDKN2A	Crizotinib+Dasatinib, ABT-348
DDR2	Crizotinib+Dasatinib
MET	Crizotinib+Dasatinib, INC280
SMO	Vismodegib, LY2940680
РТСН	Vismodegib, LY2940680
PD-L1	MK-3475

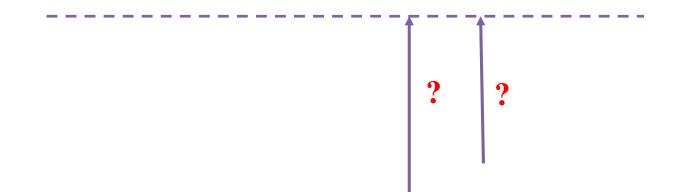
TP53	MLN9708+Vorinostat, Pazopanib+Vorinostat	
КІТ	Imatinib	
IDH1	IDH305, AG-221	
DHH/IHH	LY2940680	
MLL	EPZ-5676	
RNF43	LGK974	
RSPO	LGK974	
MRCA1	Talazoparib	
ATM/ATR	Talazoparib Cocktail?	
FANCs	Talazoparib	
EMSY	Talazoparib	
MRE11A	Talazoparib	
NBS1	Talazoparib	
PALB2 RAD50/51	Talazoparib	
C I	Talazoparib	
BRCA1/2	Olaparib, Talazoparib	
MAP2K1/3	BVD-523	
NTRK1/2/3	LOXO-101, RXDX-101	
ROS1	Ceritinib, Crizotinib,RXDX-101	
ALK	Ceritinib, Crizotinib, RXDX-101, X-396	
NOTCH1	OMP-52M51	

~80 alterations; 44 drugs, 47 trials

Dream List for the Future

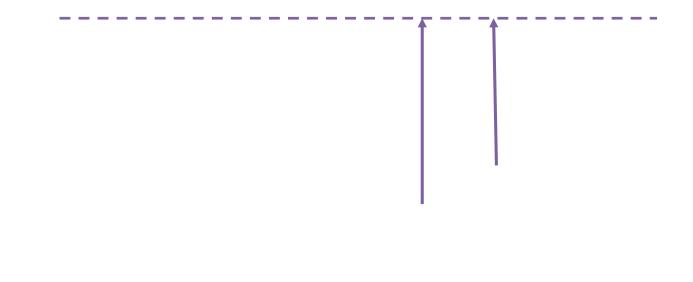
- 1. Longitudinal surveillance of biomarkers during diagnosis and treatment.
- 2. Biomarkers beyond genes from tumors and body fluids.
- 3. Integration and sharing of clinical, biomarker, immunologic and imaging "Big Data".
- 4. Physician decision support tools and algorithms for selecting optimal targeted therapies.
- 5. Evidence-based combinations of therapies. (Targeted therapy and immune therapy)

Eliminating evil Strenthen body resistance

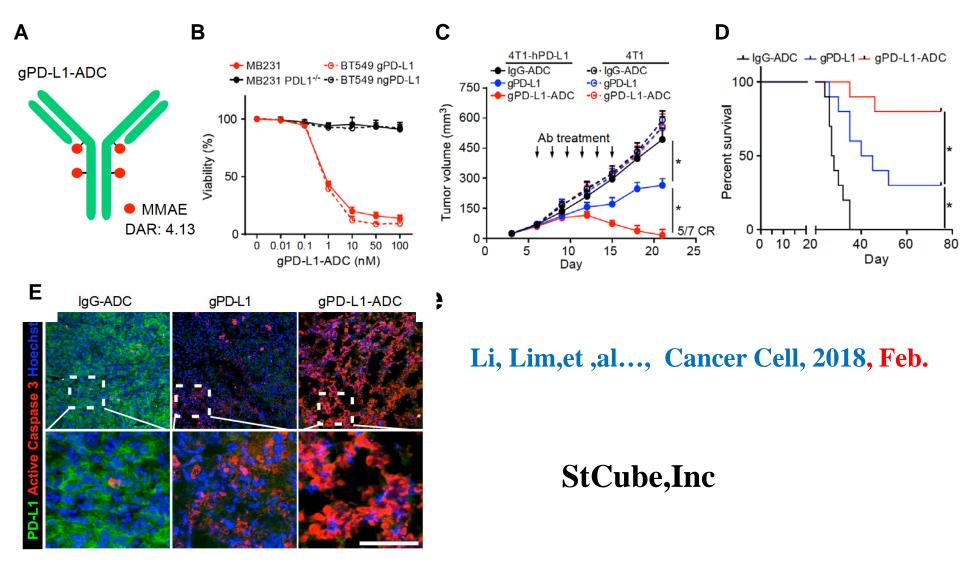

The first Chinese medicine book

Monoclonal antibodies for Immune Checkpoint Therapy

Nivolumab – anti-PD-1 Ipilimumab – anti –CTLA4


N Engl J Med 2015; 373:23-34, July 2, 2015 N Engl J Med 2017; 377:1345-1356,Oct 5,2017

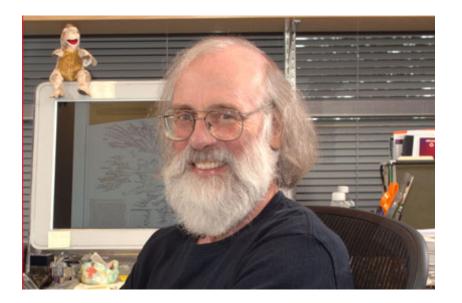
Monoclonal antibodies for Immune Checkpoint Therapy


N Engl J Med 2015; 373:23-34, July 2, 2015 N Engl J Med 2017: 377;1345, Oct 5,2017

Monoclonal antibodies for Immune Checkpoint Therapy

Tumor heterogeneity, Effective combination therapy, N Engl J Med 2015; 373:23-34, July 2, 2015 N Engl J Med 2017: 377;1345, Oct 5,2017

Monoclonal antibody targeting PD-L1 glycosylation enhances anti-tumor immunity


MM Auristatin E

This is time to

Making Cancer History®

Tony Hunter, PhD Professor Molecular and Cell Biology Laboratory American Cancer Society Professor Renato Dulbecco Chair Salk Institute for Biological Studies University of California, San Diego

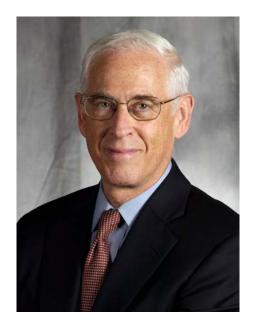
Originality of discovery: tyrosine kinase

Contribution to Biopharmaceutical/biomedical advance: inhibitors of tyrosine kinase are first line defense to treat cancer patients.

Impact on human health: cancer patients receive benefits from the treatments of tyrosine kinase inhibitors

Role in development history of the field: Kinase King (2008, Journal of Cell Biology)

Brian Druker, MD Director, Knight Cancer Institute at Oregon Health & Science University JELD-WEN Chair of Leukemia Research Investigator, Howard Hughes Medical Institute


Originality of discovery: development of small molecules as tyrosine kinase inhibitor

Contribution to

Biopharmaceutical/biomedical advance: first TKI to treat patients with Philadelphia chromosome.

Impact on human health: CML/ALL cancer patients receive benefits from the treatments of Gleevec (imatinib)

Role in development history of the field: open new era of targeted therapy using small molecules to target tyrosine kinases John Mendelsohn, MD L.E. & Virginia Simmons Senior Fellow, James A. Baker III Institute for Public Policy, Rice University Professor, Genomic Medicine Former President The University of Texas MD Anderson Cancer Center

Originality of discovery: development of monoclonal antibody against EGFR

Contribution to

Biopharmaceutical/biomedical advance: first monoclonal antibody against EGFR approved by FDA to treat cancer patients

Impact on human health: colorectal and head and neck cancer patients receive benefits from the treatments of cetuximab (Erbitux)

Role in development history of the field: open new era of targeted therapy using monoclonal antibody to target EGFR, a receptor tyrosine kinase.

Congratulations and Salute to

- Dr. Tony Hunter for his seminal discovery on role of tyrosine kinase in critical cellular functions including cellular transformation, which paved a way to later development of blocking of Tyrosine Kinases .
- Dr. Brian Druker for his relentless effort to open up small molecules as tyrosine kinase inhibitor to treat CML/ALL with Phil+ patients.
- Dr. John Mendelsohn for his diligence to develop monoclonal antibody as a method to block tyrosine kinase of EGFR to treat cancer patients including colon as well as head and neck cancer.

THANK YOU!

THE UNIVERSITY OF TEXAS
MDAnderson
Cancer Center

Making Cancer History®

松下問童子, 言師採藥去, 只在此山中, 雲深不知處